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SECTION 1
INTRODUCTION

It is well known that optical emissions resulting from deposi-
5 tion of energy in the upper atmosphere by natural and man-made events
-Q (e.g., aurora and high altitude nuclear explosions) can serve as useful 3
diagnostics to aid in understanding the detailed physics and chemistry
which are operative. It is also well known that hot plasmas (temperatures
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‘x of several eV to tens of eV or more) which are formed by nuclear explo- j
% sions may cool quite effectively by emission of electromagnetic radiation 5
¥ via allowed electronic transitions. (Hydrodynamic expansion, of course, -3
§ produces a great deal of cooling also.) However, once the temperature, 4
}f or more precisely the electron temperature of such a plasma, has dropped {
% to about an electron volt or so, electron impact excitation of atmospheric ;
& constituents effectively is limited to low lying electronic states (and 3

vibrational states in molecules). For the dominant atmospheric species,

these states are metastable, so "rapid" radiation cooling is shut off. At ;

3
3
A
<>

this point, interest in radiation as a plasma cooling mechanism tradition- .
ally has diminished quite rapidly, although spectroscopic interest
remained strong.

The purpose of this paper is to illustrate that warm plasmas
(~1 ev temperature) at high altitudes (where interactions with the
neutral atmosphere are minimal) can rid themselves over a period of hours
of considerable excess energy by forbidden radiation. Such slow but
steady cooling turns out to be significant in the case of nuclear explo-
sfon produced plasma. In addition, the partition of energy between
thermal and excited metastable s» tec is | lored.
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Spectroscopic and other studies of emissions from the upper
atmosphere have aided understanding of a variety of physical phenomena.
For example, thermospheric temperatures and neutral winds have been

inferred from Doppler measurements of 0l 6300 R radiations 1'3, precipi-

tating electron energetics in the auroral region have been deduced from
airglows at ionospheric altitudes*, and F-region plasma depletions® and
propagating waves®s’ have been observed by 0I 6300 A emissions. A
recent review of optical processes as they apply to the F-region, particu-
larly at high latitudes, is available®,

In the realm of nuclear weapons effects, optical phenomena
induced by high altitude nuclear detonations have produced both dazzling
displays and scientific diagnostic information. In 1962, a 1.4 mecaton
nuclear device (Starfish) was detonated at 400 km altitude near Johnston
Island in the Pacific. As this was an announced test with both scientific
and military objectives, numerous groups stationed equipment at a variety
of locations across the Pacific. Spectroscopic observations®,10 of
optical rc.iation both immediately following and several minutes after
detonation confirmed the presence of allowed and forbidden radiation from
atmospheric species in the immediate vicinity of the burst point and in
regions of optical activity ("artifical" aurora, etc.) well removed from
the burst point. A review article by Hoerlin!! contains color photos of
Starfish which illustrate some of the striking optical features which
produced the spectroscopic records of references 9 and 10.

This report attempts to provide reasonable estimates of radia-
tion cooling processes which operate over extended periods (i.e., hours)
in such high altitude plasmas. Forbidden radiations arising from radia-
tive decay of low-lying metastable states of 0%, 0, N*, N, and 0, have
been computed under the assumption that the low-lying states have been
populated by electron impact. Quenching of excited states by electron
collisions has been included, but heavy particle quenching has been




el R A B 2o Tt G e siriboiie Ak St ranl & L NS

ignored. Time dependent rate equations for the ground and excited states
of the five emitting species have been numerically integrated to obtain o
self-consistent solutions free from assumptions of equilibrium excited *J
state populations. Section 2 of the report describes the radiating sys- L-ﬂ
tems of interest and presents the relevant equations. Section 3 contains ;ﬁ

the results of detailed calculations which span radiation periods of 1
several hours, and Section 4 presents a discussion of results and some f@i

conclusions. "




SECTION 2

RADIATION COOLING EQUATIONS

s L

Each of the atmospheric species of interest here (0%, 0, N*, N,
and 02) possesses a series of low-lying metastable states which can be
populated by electron impact. These states are displayed schematically in
Figure 1. In order to simplify the calculations a bit, each set of
closely spaced (doublet or triplet) states, shown in the figure, has been
lumped together into a composite state. Thus, for the calculations
described here, each of the species 1is modelled as a system with two
excited states above the ground state.

3 l,ng I.-ln‘l ‘ ‘ l‘ e . . R
B . AP N .
"rL._hL-_A-_) IR ) PR RN

These excited states can be populated (and de-populated) by i
collisions with electrons, processes for which the cross-sections seem to ‘
be reasonably well known. (Collisions with other particles also can alter }
excited state populations. More about this later.) For the present work, T?
it has been assumed that radiation emitted from a plasma volume element is

»
not reabsorbed and that the total radiation field is sufficiently weak 3
that stimulated emission is insignificant. Under these conditions, the R
rate equations describing the excited state populations of a generic three =

level system are
dn, _ )
pragi -kg1noNg- koaNongt Apgny + Kighingt kpgnang*t Axgny (1) X
. -
a .
2 : . 8
( Present use of the word "state" is somewhat unprecise. 1In precise : R
spectroscopic terminology, "levels" are being combined into "terms." ;*

See page 122 of E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra, Cambridge University Press (1964).
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dn,

—_— = - - - +

Gt - KoiMoNg- kioMing- Argny + ka1faNg- kigMmngt Aain; (2)
an

— = - - + - -

3t - Ko2MoMe” KaoMMem Ao t Ki2MMem KoiMMem A, (3)

In this notation, kij is the collisional excitation (or deexcitation)
rate coefficient from state i to state j, Ajj is the Einstein coeffi-
cient for spontaneous emission, nj is the number density of particles in
state i, and ne is the electron density. The ground state, first
excited state, and second excited state are denoted by subscripts 0, 1,
and 2, respectively. Because photon absorption and stimuldted emission
are assumed insignificant in the present work, terms containing the
Einstein B coefficient are absent from these rate equations.

The electron impact excitation and deexcitation rate coeffi-
cients used for O, 0, N*, and N were from A1i!2 and Ali, et al'3. These
coefficients were obtained by integrating cross-section data with an elec-
tron Boltzmann distribution. (Other rate coefficients or cross-sections
that one might want to consider are available.)!*-16  Note that the
excitation rate coefficient, kjj, is related by detailed balance to the
deexcitation rate coefficient, kjj, by

~AEij/kT

9;ki5 = 95K54€ (4)

where the g's are statistical weights!’, AEjj is the i-j energy level
spacing, k is thé€ Boltzmann constant, and T is the electron temperature.

Excitation rate coefficients for transitions from the around

state (x3{‘) to the first excited (ala ) and second excited (b12+) states
of 0, were computed by integrating excitation cross-sections multiplied by
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electron velocity over a Boltzmann energy distribution:
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where m is the electron mass. The cross section for ground to first
excited state transitions was assumed to be

3 113
o = 3.5 x 10714 (_o.ze) [1-(___0 %) ]
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The cross-section for ground to second excited state transitions was

assumed to be
509 <10 (12 )]

2.,1398 0,413 (7)

+ 4.67 x 10-16 __3_ [ (2_53) ] (cm?)
In Equations 6 and 7, the energy, E, has units of electron volts. The f
square bracketed terms are to be interpreted as f
-1
E L

1-22 JE>E

Eo E ° *
[-#] - (8) ;
0 s E<Eg iy
-
These cross sections are due to Archer!® and result from his analytic fit 4

to cross-section data of Trajmar, et al.l® Deexcitation rate coefficients
for these transitions were computed with the aid of Equation 4. Unfortu-
nately, no suitable cross-sections or excitation rate coefficients for :
first to second excited state transitions appear to be available. There- -4
fore, the rate coefficients for excitation and deexcitation through this =
transition are assumed to be zero.

13
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The probabilities (Einstein A coefficients) used for radiative
decay of the metastable states of 0%, 0, N*, and N are due to Wiese, et
al'7. The reader's attention is called to Appendix B of that publication
wherein rules are given for combining transition probabilities for members
of a multiplet into a composite transition probability. Transition proba-
bilities for 0, (0-0 band) are due to Bader, et al?® (ala =+ X3~ trans-
ition), and from the life time data assembled by McGowan, et al? (blz; +
x3{; transition).

Transition probabilities, statistical weights, etc., for the five
systems of interest are summarized in Table 1. Electron impact excitation
and deexcitation rate coefficients are summarized in the Appendix.

Once the excited state populations have been determined, the
instantaneous radiation rates can be computed as the products of the state
densities and the transition probabilities. Thus, the rate at which
energy is lost from the plasma is obtained.

If electron thermal energy were the only energy reservoir to be
tapped, then our model for radiation cooling would be reasonably
complete. However, at the plasma densities of interest here, ion-electron
collisions are sufficiently frequent to insure some measure of thermal
energy transfer, with the result that radiation cooling indirectly removes
at least some of the ion thermal energy. In order to compute this
process, collisional heat transfer between ions and electrons was assumed

to obey
3 (S NKT) = NNh, (KT.- KT.) (9)
at Yo e e ive ier i e
where
- -9 “1-§ 3
hie 3.6 x 10 (kTe) cm’/sec. (10)
14
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Here the subscripts refer to ions and electrons; the N's are number densi-
ties (em=3); kTj and kT are in eV. The heat transfer coefficient,

hje, is due to Kilb, Stagat, and Stoeckly?Z.

In principle, ion-neutral, electron-neutral, and electron-
vibrational mode (of neutral molecules) heat transfers also should be
computed. Processes involving ion-neutral and electron-neutral collisions
can be evaluated with the aid of heat transfer coefficients from reference
22. For the purpose of estimating relative rates, a 700°K Jacchia atmos-
phere?3® has been used. For altitudes above 200 km, electron-neutral heat
transfer is negligible. In the 300 km altitude regime, and at the densit-
ies considered here, ion-neutral transfer roughly is on a par with ion-
electron transfer. With increasing altitude, heat transfer involving
neutrals diminishes as the neutral density decreases exponentially.
Energy transfer between electrons and the vibrational modes of nitrogen
molecules can be computed also. If we assume the vibrational state
distribution can be characterized by a temperature Ty, then Equation 9
(with T replaced by T,) can be used provided we adjust the rate coef-
ficient. Thus, instead of hje, we have used an electron - N, vibra-
tional modes heat transfer coefficient which is based on vibrational exci-
tation cross sections due to Schulz.2* This coefficient is

= =10
hev =2.0x10 (kTe + 0.3) exp(-0.3/kTe)

(11)
+ 8.3 x10? (kT + 2.3) exp(-x) (cm3/sec)

where

2.3/kTe 5 Te > Ty
X = (12)

with kTe and kT, in electron volts. One finds that below about 350 km

(again using the neutral atmosphere of reference 13) electron - N, colli-

sions can be quite significant.
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For the present work, the effects of ion-electron heat transfer
collisions as prescribed by Equations 9 and 10 have been included. The
other collisional energy transfer processes have been ignored, in order to
avoid undue complexity. It must be recognized that a complete calculation
of a high altitude plasma must include hydrodynamics, chemistry, etc.,
processes which we are not prepared to include in the present work. We
leave that to full blown nuclear burst simulation which should include
radiation cooling equations and all the relevant energy transfer
processes.

Electron impact collisions are not the only means by which meta-
stable state populations'may be changed. Excited state populations also
can be altered (quenched) by collisions with heavy particles, but results
of such collisions may depend strongly on the initial and final states of
the heavy particle. Given the large variety of potential target particle
state and quenching heavy particle state combinations which are possible,
one should not be surprised that cross-section or rate coefficient data
for heavy particle quenching are rather spotty and tend to be fairly
uncertain, If one uses the limited set of quenching rate coefficients
suggested by Gerard® or Ali, et al,!3 and a nominal neutral atmosphere,?3
and if one looks for the altitude above which radiative decay of a state
exceeds heavy particle quenching, then one finds that the present calcula-
tions generally apply above 200-300 km altitude, the precise altitude
depending on the particular excited species - quenchant combination.

For the present, heavy particle quenching has been ignored
also. However, the lack of such quenching is consistent with the decision
to ignore heat transfer processes which would tap the neutral thermal and
N, vibrational energy pools. Quenching collisions involving neutrals
would tend to return energy from the metastable states to neutral thermal
where, by heat transfer, it could find its way back to the electrons.
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L RESULTS

o This section contains results from a systematic set of calcula-

‘2 tions which was designed to illustrate the behavior of the various three

i level metastable systems under circumstances representative of conditions

j in the ionosphere/magnetosphere following a high altitude nuclear burst.

The results are divided into two categories; the first illustrates single
species systems collisionally excited by electrons at densities of 10,
105, and 10® cm=3. The second category represents calculations of multi-
species systems based on conditions found in selected, detailed calcula-
tions of high altitude nuclear bursts.

ot "ohton ol

= ral L.t

Computational results are presented in four types of plots. The
S first type of plot shows ground and excited state population densities as
a function of time. In most cases, the excited state densities remain
less than a few percent of the total species density, so the ground state

? density curve usually appears as a horizontal Tine across the upper
) portion of this type of graph. The discerning eye, however, will find
-~

that the ground state curve is not simply a constant.
.
. The second type of graph displays radiation cooling rates as a
» function of time. The third type of graph shows electron and ion
| temperatures as a function of time. At low ion and electron densities
f (10* cm=3), one frequently finds that collisional thermal energy transfer
g is slow compared to collisional excitation and radiation, so the ion and
4 electron temperatures can depart significantly from each other.
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The relative partition between excited state and thermal ener-
gies as a function of time is contained in the fourth type of plot. This

-
P}
‘ol

A Y

class of graph displays the ratio of energy tied up in excited states to
available energy. The available energy is defined as the sum of excited

et

state and electron thermal energies, plus ion thermal energy provided that
thermal energy transfer (Equation 9) is included in the calculation,
! (Equation 9 was included in all but two cases which are noted.)

PO

Because the objective of this report was to emphasize energy
partition and radiation cooling over extended periods, most calculations
: covered an interval of 30,000 seconds (8 1/3 hours). In order to insure
q legibility of plots which might span many decades, most graphs have been
]

limited to no more than six decades. As a result, some curves (e.g.,
certain excited state densities) of particularly small magnitude rapidly

PO IR

Te "0 "0 S0 s e

disappear or don't appear at all. This plotting effect usually occurs, if
at all, in low electron density calculations.

i

The calculations presented here are summarized in Table 2. In

all cases, initial excited state densities were assumed to be zero. As
Table 2 indicates, two categories of calculations were done. The first

SR GRS
J—x‘ AL A -

A
TR Sy

. category is composed of a single species systems with the species and
electron densities set equal. Electron densities were set to 10, 10%, or

! .'<
o 108 cm=3 to cover the range of interest in late-time high altitude nuclear ;]
R burst problems; electron and ion temperatures were initialized to one -
g electron volt. :

The second category of cases is composed of multi-species sys-
tems which are representative of a range of conditions found in detailed
two-fluid numerical simulations of high altitude nuclear bursts. Species

Coe s e e > LR P
CPORIPIRN ‘L Y P

densities, electron density, and ion electron temperatures were as indica-
K3 ted in Table 2.
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It's worthwhile, perhaps, to note that excited state densities
and radiation rates are not trivially related to the electron density.
If, for example, we assume the quasi-steady state, then Equations 2 and 3
yield the ratio of first to second excited state densities for our generic
three level system:

mo_ km([kzo + k21] n,* Aot AZI) + ko2 (k21 n, * Az1)
Ny ko2 ([klo + klz] neg + AIO) *+ ko1 kyz2 ng

(13)

Even in the quasi-steady state, the A's are not negligible in general, so
the population ratio and radiation rate ratios depend in a non-trivial
manner on the electron density. This is, of course, already well known.

The first series of calculations presented here deals with fully
ionized oxygen plasmas. In order to dispense at the outset with questions
about the significance of collisional thermal energy transfer between ions
and electrons, cases without and with the transfer process are presented
in Figures 2, 3 (without) and Figures 4-6 (with). Thus, if one compares
Figures 2 and 4 (electron density of 10* cm-3), it is seen that the
0*(200) densities are virtually identical during the first 10,000 seconds
and then gradually deviate until the curve in the absence of energy
transfer (Figure 2) is about 20% below the curve with the transfer (Figure
4). A comparison of radiation rates in these two figures shows the same
trend, e.g., at 30,000 seconds, the 2D%“S® transition is cooling about
20% slower in Figure 2 than in Figure 4. Both of these observations are
readily understood by comparing the electron temperature curves of Figures
2 and 4. During the first few thousand seconds both curves compare favor-
ably, and the ion temperature curve in Figure 4 indicates very little
energy transfer from ions to electrons. At 30,000 seconds, however, the
electron temperatures differ by about 10% and the ion temperature (Figure
4) has dropped by about a tenth of an eV,
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)3 Finally, the curves denoting the fraction of available energy
SE which is tied up in excited states may be compared. Both curves peak at T
about 10,000 seconds, but the curve in Figure 4 peaks at a lower value i
ﬁg (even though the electron temperature and excited state densities are
i:j higher than found in Figure 2) because the available energy has been ]
AN
) doubled by coupling to the ions. The most significant point here is that
. ™4 4
A in each case the fraction of available energy tied up in excited states is |
f:g a few percent. ]
) 1
N ]

With the aid of Figures 3 and 6 one can make a parallel set of
comparisons at the other electron density extreme considered here

12
ol aid

(108 cm=3). As one would expect, the case with ion-electron energy trans-

it
s at o
)
ai’a0’e Yo

Ly .

fer (Figure 6) maintains a slightly (~30%) higher electron temperature

iy
D
)

\é than the case without (Figure 4), so exicted state densities and radiation i
» rates are also somewhat larger. Unlike the preceding pair of cases, the ’
'éf ion and electron temperatures are now locked together by collisional coup- b
j} ling which transfers energy to the electrons faster than it can be pumped 3
:gj into excited states and radiated away. In Figure 3, the energy fraction f
.“ in excited states very rapidly peaks at about 10% while in Figure 6 the i
=?§ corresponding peak is at about 8%. }
;ﬁ These comparisons (and similar comparisons, not presented, for
' the other emitting species) lead us to observe that for the range of elec-
:ﬂ tron and species densities considered (where the electron and species
‘25 densities are equal) failure to couple ion and electron thermal energy E
Sﬁ reservoirs results at most in a modest alteration of the excited state '
- densities, radiation rates, and energy partition. Now that the magnitude 4
.;ﬁ of such coupling has been established, we proceed to the remaining calcu- f
-2 lations, all of which included the coupling.
" -
- One can now consider Figures 4, 5, and 6 as a set of calcula-
::3 tions which illustrate the electron density dependence of radiation cool-
'g ing by the o* system. This series of figures shows that at an electron
!
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density of 10* cm3 it takes roughly 10,000 seconds to reach a quasi-
steady distribution of excited states, radiation rates, etc. At 10° cm-3
density, the time required to reach the quasi-steady state is about 200
seconds; at 108 cm=? density, the quasi-steady state is attained "instant-
1y" as compared to the time scale of the plots. (Note that the ion-elec-
tron energy transfer rate can alter the scaling of this time constant
because the electron temperature can remain higher for a longer time.) As
one would expect, the high ion-electron density case radiates much more
rapidly than the lower density cases. In addition note that at the 10*
cm-3 density, the dominant transition is 2D%s*S®. At higher densities,
the 2P%2p% and 2p%*S® transitions dominate. This switch results from
the shift in relative populations of the exicted states, as expressed in
Equation 13, which occurs as the electron density is altered. It is the
interplay of excitation rates and transition probabilities which is
primarily responsibie for this effect.

As noted earlier, the curves denoting the fraction of available
energy tied up in excited states all remain in the range of a few percent
or less. Thus, from the ion and electron temperature curves we conclude
that the time required to radiate one-half the energy is about 6,000
seconds at 10% cm-3, about 30,000 seconds at 10° cm-3, and (very) roughly
2 x 10° seconds at 10" cm=3.

The excitation and radiation characteristics of nitrogen ions at
the electron densities of interest are displayed in Figures 7, 8, and 9.
Upon inspection of these figures, one notes that the excited state densi-
ties and radiation rates attain a quasi-steady state virtually instantly
as compared to the 30,000 second ‘time scale of the plots. Only the case
at 10* cm=3 electron density (Figure 7) shows a perceptible period (a few
hundred seconds) when departures from a quasi-steady distribution of
states are evident.
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It's worth noting the variation with electron density of the
ratio of radiation rates for the !D»3pP and !S+!D transitions. For the 10*
cm=3 and 10® cm=3 electron density cases, this ratio is always greater
than one. At 10® cm~3 electron density and while the electron temperature
is above ~-0.53 eV (during the first ~1500 seconds), the ratio is less
than one. This behavior can be understood in terms of Equation 13. Based
on trasition probabilities and photon energies, one can compute that the
ratio of !'D to S state densities needs to be - 233 or less if the
radiation rate for the 'S+3p transition is to dominate. At low electron
density, electron empact excitation is insufficient to generate a ratio
this small. One observes in Figure 9 (early time) that the 1D to !S state
density ratio is about 100 (electron density is 108 cm=3), but in Figure 8
the ratio has jumped to roughly 1000 (electron density is 10® cm=3),

As in the case for radiation from oxygen ions, the nitrogen ion
calculations indicate that energy associated with excited states is at
most a few percent of the available energy. Thus, the temperature curves
allow us to readily calculate that a bit more than 2000 seconds 1is
required to radiate one-half the available energy at 108 cm-3; about 5500
seconds are required at 10° cm-3. One also notes that at the 10* cm-3
electron density, excitation and radiation is able to remove energy from
the electrons faster than it can be replaced by transfer from the ions.
As the higher electron densities, this is not the case.

The radiating characteristics of oxygen atoms over the electron
density range of interest are presented in Figures 10, 11, and 12. The
reader is reminded that the radiating species density has been set equal
to the electron density (and also to a non-radiating ion density). This
rather arbitrary choice influences quite strongly the magnitudes of
various results. The particular choice of equal densities was made
because it provides a reasonable balance between the heat capacity of the
ion-electron gas and energy stored in excited states. From these results
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the reader can extrapolate, in a limited sense, to other density combina-
tions. If the oxygen atom density had been substantially larger than the
electron and ion densities, then most of the available energy would have
gone mainly into the lowest excited state at the same time the electron
and ion temperatures dropped to low values. The resultant curves would be
relatively flat and uninteresting. (Clearly, the best approach is to
compute for the precise conditions of interest in a particular problem.)

The first point to note in this series of three figures is that
the quasi-steady state is obtained, even at the lowest electron density,
rather quickly as compared to the time scale of the plots. However, at
10* cm-? electron density (Figure 10), the radiation cooling and temper-
ature curves are quite flat as a result of relatively low excitation
rates. One sees that less than a percent of the available energy is tied
up in excited states, so it readily can be inferred from the temperature
curves that only about 6 percent of the original energy has been radiated
over the 30,000 second period.

The calculation at 105 cm=3 electron density shows more inter-
esting temporal behavior and achieves substantial cooling over 30,000
seconds. Once again, the fraction of available energy which is tied up in
excited states is quite small (< 2%), so we readily estimate from the
temperature curves that one-half the initial energy was radiated by about
11,000 seconds. Note that radiation from the long lived !D+3P transition
is the dominant loss channel, a result which is not too surprising in
light of the fact that the !D state has at least three orders of magnitude
greater population density than does the 'S state. One might expect the
relatively short lived !S+!D transition to dominate, but the ratio of
transition probabilities (!S+!D to !0+3P) is only about 200 and can't
compensate for the (at least) three orders of magnitude difference in
populations (Refer to Table 1).

48

Rt R B e e e A e A W ——

Py YU Y]

. WS e
LAY PN S

. 4 ) o
. . g 2. 2-'a ¢




!!!. !! ..
D'.
-'. ]
vy
E~.1
Kl
%!
oy
ot
o et
=)

a0 gy g -
e

o
S

2t
EY

Inspection of results corresponding to an electron density of
108 cm-3 (Figure 12) reveals that at early times the !S state density is
about two orders of magnitude smaller than the D state density. In view
of the ratio of transition probabi]ities; it's not surprising to find that
initially the 1s,1p transition dominates. Note that the rapid drop in
temperature reduces the 'S state density and the 'S»!D radiation rate so
that after several hundred seconds the !D»3P transition dominates. This
shift from predominantly green to predominantly red radiation is consis-
tent with observations!® of the Starfish high altitude nuclear explosion.
(One should not expect these simplified calculations to accurately repro-
duce the temporal behavior observed in the actual nuclear burst event
because too many relevant aspects of the magnetohydrodynamics, air chemis-
try, etc. have been omitted here.) Finally, we note that in this calcula-
tion one-half the initial energy was radiated during the first 2500
seconds.

We now turn our attention to radiation from atomic nitrogen;
Figures 13, 14, and 15 contain computational results at the selected elec-
tron densities. The reader is reminded that as in the atomic oxygen
calculations, nitrogen atom, electron, and non-radiating ion densities are
equal. Figure 13 presents the results for an electron density of 10"
cm=3. Note that the excited state population densities never really reach
a quasi-steady distribution, i.e., the excited state densities continue to
increase as the electron temperature falls during the entire 30,000 second
interval. Also note that at zero time the 2P° state density "instantly"

jumps to a value near 10~} cm-3

, and the radiation rates for transitions
which originate from this level similarly jump to finite values. A plot
with a greatly expanded time scale shows that the 2P? state density rises
with an e-folding time of about 10 seconds, so the rise appears instant-
aneous on a 30,000 second time scale. Finally, the fraction of available
energy tied up in excited states is seen to reach 7% at 30,000 seconds.
If excited state energy and temperature drops are taken together, one can
see that only about 3% of the initial energy has been radiated by the end

of this calculation.
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Figure 13. Radiation properties of N atoms at an electron density of 10* cm3,
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Calculations at electron densities of 10° and 10% cm=3 show
quite different behavior. Both of these cases rapidly reach a quasi-
steady configuration (less than 1000 seconds required at 10° cm-3) and
substantial fractions of the initial energy have been radiated. Although
the curves denoting the energy fraction in excited states peak a bit above
10%, they decay to about 3.5% by the time one-half the initial energy has
been radiated (~20,000 seconds at 10° cm=3; -3000 seconds at 108
em-3). In these cases, the infrared (2P%+2D%) transition is responsible
for the bulk of the cooling. Observe that in both Figures 14 and 15, the
2p0 state density peaks at about 13% of the total nitrogen atom density.
This common feature arises because the radiative transition probability
from the state (see Table 1) is quite low, so collisional excitation and
deexcitation is responsible for establishing the state density in accord
with a Boltzmann distribution, i.e., the ratio of excited state densities
in Equation 13 becomes independent of electron demsity.

Calculations of radiations from 0, are considered next. Once
more, the 0, density has been equated to the ion and electron densities.
Figures 16, 17, and 18 contain the relevant plots. The ground and excited
states, X3{§, alAg, and blzg, have been abbreviated as 37, 'a, and !J in
these figures. Also note that the present calculations considered only
two optical transitions, as mentioned earlier.

Figure 16 details the excitation and radiation characteristics
of 0, at an electron density of 10" cm-3. From the first parts of the
figure, it's clear that the !a state requires about 10,000 seconds to
attain a quasi-steady state but the 12 state is populated virtually
instantly as compared to the time scale of these calculations. The radia-
tion rates reflect these excitation characteristics. At this electron

density, much less than a percent of the available energy goes into
excited states, and only about 2-1/2% of the initial energy is radiated
during the calculation time.
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At higher electron densities, the 0, radiation characteristics
are quite different. At 10° cm=3 (Figure 17), the quasi-steady state is
attained in about 2500 seconds, and radiation removes nearly one-half the
initial energy, as indicated by the temperature curves. At most, only
about 5% of the available energy is tied up in excited states. Note that
prior to ~10,000 seconds, radiation from the !J+3] transition was the
dominant cooling mechanism, but afterwards the !a+3J transition dominates.

Figure 18 illustrates that at 10% cm-3 electron density, the
quasi-steady state is obtained instantaneously as compared to the computa-
tion time span. The !7»37 transition is seen to be dominant over the full
30,000 second period and is chiefly responsible for the energy loss over
the entire computation. About 1500 seconds were required to radiate one-
half the initial energy. Note that in this case, radiation cooling lower-
ed both ion and electron temperatures to 0.22 eV after 30,000 seconds.
This particularly low temperature could be achieved because the metastable
levels of 0, are quite low as compared to the metastable states of 0*, 0,
N*, and N (Refer to Figure 1). Finally, observe that in this calculation
the peak fraction of available energy in excited states was about 7%.

To complete the discussion of these three cases, it's worth
pointing out the trend as to which of the 0, transitions dominates. At
10* cm=3 electron density (Figure 16), the !J+3] transition is dominant
for only the first 2000 seconds; at 10% cm=3 (Figure 17) it's dominant for
the first 10,000 seconds, and at 108 cm=3 (Figure 18), it dominates for
the entire 30,000 seconds. This trend is not a direct temperature effect
(lower ultimate temperatures at higher electron densities) because the !a
state is lower energy than is the !J state. Instead, the trend is
explained by Equation 13, i.e., it is the play-off between collisional and
radiative processes which is important. There is an indirect temperature
effect insofar as the collisional excitation and deexcitation rate
coefficients are temperature dependent.
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The discussion of single species systems is now complete. The
remainder of this section will be devoted to calculations based on species

PR A YK )

densities and initial electron and ion temperatures extracted from
detailed high altitude nuclear burst calculations. In these calculations,
the time scale has been adjusted to span the most interesting phase of the
radiation cooling process.

 MAIN RIS AEBXSIPRAAONE

The Starfish high altitude nuclear test event, conducted on 9
July 1962 during the Fishbowl series, consisted of a 1.4 megaton device
detonated at 400 km altitude above Johnston Island in the Pacific.
- Recently, Fajen?> has performed a series of detailed two-fluid magneto-

St Aante f e e

4 hydrodynamic calculations of the Starfish event, The results of his
computer simulations contain the best available spatially and temporally
E resolved estimates of electron and species densities, ion and electron
temperatures, and coupled ion-neutral dynamics. Numerical data corre-
g sponding to 90 seconds after detonation have been extracted from Fajen's
calculations and have been used as the time equals zero initial conditions
for radiation cooling calculations which are presented in Figures 19 and
20. The reader may wish to refer to Table 2 for a summary of these data.

-
ol

Figure 19, which corresponds to an altitude of 395 km, illus-
trates an element of fireball plasma which is predominantly atomic

A

- neutrals (N and 0) at a total atom density of 9.6 x 108 cm=3. Oxygen ions
g are the least populous species (10* cm=3); the nitrogen ion density is
g about 0.75% of the neutral atom density. Molecular oxygen has a
3 density of about 0.25% of the neutral atom density. The plots indicate
g that with the exception of 0,, the initial transients required to populate
g the excited states are finished in a few tens of seconds. As one might
ﬁ expect, based on the preponderance of oxygen atoms and the relatively low
2 temperature, radiation in the oxygen red line ('D+3P transition) is the
; major cooling mechanism; the electron temperature is too low to effec-
'i tively excite the oxygen green line (!S+!D transition). The second most

e 65
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active transition (energy-wise) is the infrared 2P%2p° transition in
atomic nitrogen, but after about 50 seconds (i.e., 140 seconds after
detonation) the energy loss rate is about a factor of ten below that for
the oxygen red line. For this particular calculation, other transitions
and species are relatively unimportant to the cooling process.

The fraction of available energy tied up in excited states is
seen in Figure 19 to peak at about 45%, a value substantially larger than
found in previous calculations. This large fraction ocurs because the
ratio of atoms to free electrons is large (~100), and the electrons have
sufficient thermal energy to populate the excited states. Thus, nearly
half the avaialble energy is rapidly stored as excited state energy.

The calculation depicted in Figure 20 corresponds to conditions
extracted from Fajen's Starfish simulation at 90 seconds after burst at
550 km altitude. In this case the electron density and neutral atom
densities are nearly equal. The 0% density is about a factor of 2 larger
than the N* density, while the 0 density is about a factor of 3 larger
than the N density. Molecular oxygen is a minor constituent. Although
both ion and electron temperatures were about 1.5 eV initially, very rapid
collisional processes caused these temperatures almost instantly to drop
to about an eV. In conjunction, we note that the fraction of available
energy in excited states peaks at nearly 18% quite early in the calcula-
tion. 1It's also interesting to observe that except for N and 0,, the
population densities of the first excited states of the species reach 10%
of the density of the respective ground states. For N and 0,, the first
excited state populations reach about 25% of the respective ground state
densities.

The combined action of the ionic and atomic radiators, all of

which are radiating at roughly the same rate, is to remove about 59% of
the initial energy over the 1000 second time span. (Keep in mind that
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these calculations do not include effects of fluid motion, deionization

7} .,
PRI

e

chemistry, etc. which would act in a complete and self-consistent calcula-

D
[

tion during the 1000 second span to alter the available thermal energy

and, hence, the radiation rate.) Radiation from molecular oxygen is
negligible, from the cooling standpoint, because the 0, density is so low.

LA

O ':’i,f"ﬁ‘:“.'.’

In order to investigate radiation cooling and energy partition
long after a nuclear detonation, we consider the high altitude environment

aé predicted by a detailed, two-fluid numerical simulation 2% of a megaton-
gg range explosion at 200 km altitude. Calculations depicted in Figure 21
- and 22 represent, at time =zero, species densities and temperatures
:ﬁ extracted from the detailed simulation at 60 minutes after detonation.
;ﬂ These radiation computations span almost 3 hours.

1- The calculation presented in Figure 21 represents the environ-
}% ment at 850 km altitude within a dense portion of the geomagnetic field
ﬁ? aligned fireball/plume. As indicated in Table 2, the electron density is
5 slightly above 10% cm~3, and the predominant species are ions. Ion and

electron temperatures were both initialized to 0.504 eV at the beginning
of the radiation cooling calculation. One finds that this system almost
instantaneously attains a quasi-steady state with only a bit more than one
percent of the available energy associated with excited states. An exam-
ination of radiation rate curves reveals that nitrogen ions are the most
active radiators. In fact, N* transitions radiate, over 10,000 seconds,
more energy than all of the other species combined; about 30% of the
initial energy is radiated during this interval.

The final case to be considered is shown in Figure 22 and repre-

sents conditions extracted from the aforementioned simulation at 60

minutes after detonation. This set of species and temperatures represents
the environment at 1000 km altitude in a region within the geomagnetic
field aligned fireball/plume plasma but outside of its dense core. Ilonic
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and atomic species all have nearly equal densities of about 10® cm-3, and
molecular oxygen is present only as a very minor species. The initial ion
and electron temperatures have values of 0.393 eV, so this case describes
plasma which is initially much cooler than that in previous cases. The
radiation cooling curves indicate that, at these low temperatures, nitro-
gen ions and oxygen atoms are the effective radiators. In both species,
it is the red lines which account for the cooling. In view of the low
temperatures and approximate equality between electron and radiating
species densities, it's not surprising that at most about one precent of
the available energy was contained in excited states. The temperature
curves indicate that about 17% of the initial energy was radiated over the
10,000 second period.
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SECTION 4
DISCUSSION AND CONCLUSIONS

The sample calculations of the preceding section rather conclu-
sively demonstrate that, on a time scale of hours, forbidden line radia-

.

POBCR

tion from low lying metastable states of atmospheric constituents can

G
PPl

remove substantial fractions of the available thermal energy. From the

R}

standpoint of computing the behavior and decay of fireball plasma from a
high altitude nuclear explosion, a process, such as radiation cooling,
which significantly changes the ion and electron temperatures may be gquite
jmportant. In addition to altering temperature dependent deionization
chemistry rate coefficients and the ion-electron scale height, radiation
cooling may result in a reduction in the diamagnetic levitation of a
plasma in the geomagnetic field. This last effect derives from the fact
that ion-electron thermal energy drives a system of electrical currents
within the plasma which interact with the geomagnetic field and cause the

; plasma to move, transverse to the field, toward a region of reduced field

P (i.e., generally upward).

. The results presented are a bit artificial in the sense that
:g they represent the response of an initially cold system of particles to a
. delta-function heating pulse at zero time. In a more realistic calcula-
j{ tion, the system at some non-zero initial temperature would be subject to
yor non-instantaneous heating (and cooling) as the result of hydrodynamic
;ﬁ evolution. Nevertheless, the results provide a basis for estimating
{ e-folding time constants for cooling and for particular forbidden 1line

radiation rates under a variety of conditions. Although most of these
forbidden lines are in the visible, a few are in the ultraviolet and short
wavelength infrared.
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Earlier, in Section 2, it was pointed out that excited state
populations and radiation rates do not scale in a simple way with electron

density. The mathematical statement of the scaling under quasi-steady
conditions was presented in Equation 13, and the computed results nicely
demonstrate the variation of excited populations with electron density
under more general conditions. The intertwining of temperature dependent
excitation and deexcitation rate coefficients and radiative transition

CRLX -

WY

3 probabilities makes it difficult to sort out the significance of individ- éi
% ual line radiations relative to the others without doing quite a bit of 3
3 work. ;T
3 A very interesting result of the calculations concerns the

g partition of available energy between excited state and thermal energies. .
4 The computations indicate that when the temperature is an electron volt or "

lower, and when the electron density is comparable to or exceeds the
density of radiating species, then the fraction of available energy tied
up in excited states is ~10% or less. However, if the radiating species
density substantially exceeds the electron density (e.g., far more N or O
atoms than electrons), then a large fraction of the available energy may
go to producing excited states, even if the temperature is fairly low
(<0.4 eV). Under such circumstances, fluid dynamical calculations which
compute fon-electron pressures without accounting for thermal energy which
would be absorbed in the production of excited states will possibly
miscompute pressure gradient forces and diamagnetic effects by perhaps a
factor of two. One remedy for this problem would be to carry explicitly
excited state populations. However, the present calculations indicate

WP HWE N o v ok oy N oy S )

2 that at electron densities of greatest interest (108 cm=3 and larger), the

j quasi-steady state is attained rather rapidly. Therefore, it should be

j}: possible, in all but highly dynamic situations, to compute by the :
quasi-steady approximation the excited state populations without explic- j?

Y

itly carrying them. Thus, standard fluid treatments could be improved by
computing the energy tied up in excited states and by subtracting this

1
N




N 5 oS

ottt ot 8 o]

energy from the thermal energy prior to a calculation of ion electron

Pl M a? chatad 2l

pressure or temperature.

In summary, it has been determined that high altitude nuclear
burst simulations which span substantial time intervals (hours) need to
include radiation cooling by forbidden 1ine radiation. The quasi-steady
state approximation, which avoids the necessity of carrying excited state

SR,

S densities explicitly, appears to be acceptable for all but highly dynamic
2 problems. Furthermore, it has been shown that failure to account for the
Dy partition between excited state and thermal energies can introduce

*
-

non-trivial errors into pressure and other temperature dependent terms of
the magnetized fluid equations.
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APPENDIX

The following tables summarize electron impact and deexcitation
rate coefficients for 0*, N*, 0, N, and 0,.

TABLE A-1.1 DEEXCITATION RATE COEFFICIENTS FOR THE LOW-LYING METASTABLE
STATES OF 0% (Te in ev)

Transition Deexcitation Rate Coefficient
(cm3/sec)

2p0 - 450 1.3 x 10-8 (1,)-1/2

2p0  4s0 6.3 x 10-° (1 )"1/2

2p0 . 2p0 2.4 x 1078 (1 )-1/2

t  From reference 13.

TABLE A-2.Y DEEXCITATION RATE COEFFICIENTS FOR THE LOW-LYING METASTABLE
STATES OF N* (T in ev)

Transition Deexcitation Rate Coefficient
(cm? /sec)

'p -3 4.8 x 10-8 (T )-1/?

's - % 3.2 x 1078 (1,)-1/2

s - 1o 3.3 x 1078 (T )-1/2

t  From reference 13.
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FOR THE LOW-LYING STATES OF ATOMIC NITROGEN.

TABLE Ar4.t ELECTRON IMPACT EXCITATION AND DEEXCITATION RATE COEFFICIENTS
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! TABLE A-5. ELECTRON IMPACT DEEXCITATION RATE COEFFICIENTS FOR LOW-LYING 3
L STATES OF MOLECULAR OXYGEN R
X To(ev) alag » XLy bIZ; » ] 2
& 0.1 2.595 (-11)" 2.058 (-11) 1
¥ 0.2 8.968 (-11) 8.089 (-11)
% 0.3 1.560 (-10) 1.575 (-10) '
% 0.4 2.241 (-10) 2.433 (-10) g
X 0.5 2.989 (-10) 3.341 (-10) ]
0.6 3.821 (-10) 4.262 (-10) :
o 0.7 4.733 (-10) 5.171 (-10) >
j 0.8 5.704 (-10) 6.052 (-10) 3
g 0.9 6.714 (-10) 6.894 (-10) i
- 1.0 7.782 (-10) 7.690 (-10)
1.2 9.795 (-10) 9.140 (-10)
1.4 1.177 (- 9) 1.040 (- 9) »
1.6 1.362 (- 9) 1.149 (- 9) =
- 1.8 1.532 (- 9) 1.242 (- 9)
g 2.0 1.687 (- 9) 1.322 (- 9)
E, 2.5 2.009 (- 9) 1.474 (- 9)
o 3.0 2.253 (- 9) 1.574 (- 9)
i': 4.0 2.569 (- 9) 1.680 (- 9)
, 5.0 2.735 (- 9) 1.712 (- 9)
;‘ 6.0 2.811 (- 9) 1.706 (- 9)
A 7.0 2.833 (- 9) 1.679 (- 9)
S 8.0 2.819 (- 9) 1.641 (- 9)
‘ 9.0 2.784 (- 9) 1.596 (- 9)
10.0 2.733 (- 9) 1.548 (- 9)

* Numbers in parenthesis indicate the power of ten by which the
entries are multiplied.
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